lunes, 30 de marzo de 2015

Equilibrio Rotacional

Equilibrio Rotacional

Equilibrio Rotacional.- Ocurre cuando un cuerpo o sistema no gira con respecto a algún punto, aunque exista una tendencia.CONDICIONES DE EQUILIBRIO: Esta condición de equilibrio implica que una fuerza aislada aplicada sobre un cuerpo no puede producir por sí sola equilibrio y que, en un cuerpo en equilibrio, cada fuerza es igual y opuesta a la resultante de todas las demás. Así, dos fuerzas iguales y opuestas, actuando sobre la misma línea de acción, sí producen equilibrio. El equilibrio puede ser de tres clases: estable, inestable e indiferente. Si un cuerpo está suspendido, el equilibrio será estable si el centro de gravedad está por debajo del punto de suspensión; inestable si está por encima, e indiferente si coinciden ambos puntos. Si un cuerpo está apoyado, el equilibrio será estable cuando la vertical que pasa por el centro de gravedad caiga dentro de su base de sustentación; inestable cuando pase por el límite de dicha base, e indiferente cuando la base de sustentación sea tal que la vertical del centro de gravedad pase siempre por ella.

Estabilidad y EquilibrioUn cuerpo en equilibrio estático, si no se le perturba, no sufre aceleración de traslación o de rotación, porque la suma de todas las fuerzas u la suma de todos los momentos que actúan sobre él son cero. Sin embargo, si el cuerpo se desplaza ligeramente, son posibles tres resultados: (1) el objeto regresa a su posición original, en cuyo caso se dice que está en equilibrio estable; (2) el objeto se aparta más de su posición, en cuyo caso se dice que está en equilibrio inestable; o bien (3) el objeto permanece en su nueva posición, en cuyo caso se dice que está en equilibrio neutro o indiferente.Daremos los ejemplos siguientes: Una pelota colgada libremente de un hilo está en equilibrio estable porque si se desplaza hacia un lado, rápidamente regresará a su posición inicial. Por otro lado, un lápiz parado sobre su punta está en equilibrio inestable; si su centro de gravedad está directamente arriba de su punta la fuerza y el momento netos sobre él serán cero, pero si se desplaza aunque sea un poco, digamos por alguna corriente de aireo una vibración, habrá un momento sobre él y continuaré cayendo en dirección del desplazamiento original. Por último, un ejemplo de cuerpo en equilibrio indiferente es una esfera que descansa sobre una mesahorizontal; si se desplaza ligeramente hacia un lado permanecerá en su posición nueva.En la mayor parte de los casos como en el diseñode estructuras y en trabajos con el cuerpo humano, nos interesa mantener equilibrio estable o balance, como decimos a veces. En general un objeto cuyo centro de gravedad esté debajo de su punto de apoyo, como por ejemplo una pelota sujeta de un hilo, estará en equilibrio estable. Si el centro de gravedad está arriba de la base o soporte, tenemos un caso más complicado. Por ejemplo, el bloque que se para sobre su extremo, si se inclina ligeramente regresará a su estado original, pero si se inclina demasiado, caerá. El punto crítico se alcanza cuando el centro de gravedad ya no cae sobre la base de soporte. En general, un cuerpo cuyo centro de gravedad está arriba de su base de soporte estará en equilibrio estable si una línea vertical que pase por su centro de gravedad pasa dentro de su base de soporte. Esto se debe a que la fuerza hacia arriba sobre el objeto, la cual equilibra a la gravedad, sólo se puede ejercer dentro del área de contacto, y entonces, si la fuerza de gravedad actúa más allá de esa área, habrá un momento neto que volteará el objeto. Entonces la estabilidad puede ser relativa. Un ladrillo que yace sobre su cara más amplia es más estable que si yace sobre su extremo, porque se necesitará más esfuerzo para hacerlo voltear. En el caso extremo del lápiz, la base es prácticamente un punto y la menor perturbación lo hará caer. En general, mientras más grande sea la base y más abajo esté el centro de gravedad, será más estable el objeto.En este sentido, los seres humanos son mucho menos estables que losmamíferoscuadrúpedos, los cuales no sólo tienen mayor base de soporte por sus cuatro patas, sino que tienen un centro de gravedad más bajo. La especie humana tuvo que desarrollar características especiales, como ciertos músculosmuy poderosos, para podermanejar el problema de mantenerse parados y al mismo tiempo estable. A causa de su posición vertical, los seres humanos sufren de numerosos achaques, como el dolor de la parte baja de la espalda debido a las grandes fuerzas que intervienen. Cuando camina y efectúa otros tipos de movimientos, una persona desplaza continuamente su cuerpo, de modo que su centro de gravedad esté sobre los pies, aunque en el adulto normal ello no requiera de concentración de pensamiento. Un movimiento tan sencillo, como el inclinarse, necesita del movimiento de la cadera hacia atrás para que el centro de gravedad permanezca sobre los pies, y este cambio de posición se lleva a cabo sin reparar en él. Para verlo párese usted con sus piernas y espalda apoyadas en una pared y trate de tocar los dedos de sus pies. Las personas que cargan pesos grandes ajustan en forma automática su postura para que el centro de gravedad de la masa total caiga sobre sus pies.Principios de Equilibrio1.     Condiciones Generales de Equilibrioa.    La suma algebraica de las componentes (rectangulares) de todas las fuerzas según cualquier línea es igual a cero.
b.    La suma algebraica de los momentos de todas las fuerzas respecto cualquier línea (cualquier punto para fuerzas coplanares) es igual a cero.


Equilibrio rotacional





Equilibrio Traslacional


6.3 – PRIMERA CONDICIÓN DE EQUILIBRIO

OBJETIVO:
El alumno podrá encontrar las fuerzas desconocidas aplicando la primera condición de equilibrio


Un cuerpo se encuentra en estado de equilibrio traslacional si y sólo si la suma vectorial de las fuerzas que actúan sobre él es igual a cero.
Cuando un cuerpo está en equilibrio, la resultante de todas las fuerzas que actúan sobre él es cero. En este caso, Rx como Ry debe ser cero; es la condición para que un cuerpo esté en equilibrio:
 
 
EJEMPLO:
Una pelota de 300N cuelga atada a otras dos cuerdas, como se observa en la figura. Encuentre las tensiones en las cuerdas A, B Y C.

 
SOLUCIÓN:
El primer paso es construir un diagrama de cuerpo libre:

Al sumar las fuerzas a lo largo del eje X obtenemos :
S Fx = -A cos 60° + B cos 40° = 0

Al simplificarse por sustitución de funciones trigonométricas conocidas tenemos:
-0.5A + 0.7660B = 0 (1)

Obtenemos una segunda ecuación sumando las fuerzas a lo largo del eje Y, por lo tanto tenemos:
(Cos 30° + cos 50° )
0.8660A + 0 .6427B = 300N (2)

En las ecuaciones 1 y 2 se resuelven como simultanea A y B mediante el proceso de sustitución. Si despejamos A tenemos:
A = 0.7660 / 0.5
 
A = 1.532B

Ahora vamos a sustituir esta igualdad en la ecuación 2
0.8660(1.532B) + 0.6427B = 300N

Para B tenemos:
1.3267B + 0.6427B = 300N
 
1.9694B = 300N
B= 300N / 1.9694
 
B= 152.33N

Para calcular la tensión en A sustituimos B = 152.33 N
A = 1.532(152.33N) = 233.3N

La tensión en la cuerda C es 300N , puesto que debe ser igual al peso.

Una pelota de 100N suspendida por una cuerda A es tirada hacia un lado en forma horizontal mediante otra cuerda B y sostenida de tal manera que la cuerda A forma un ángulo de 30° con el poste vertical ¿ encuentre las tensiones en las cuerdas A y B.
 
SOLUCIÓN
Primero dibujamos le diagrama cuerpo libre:
Ahora se aplica la primera condición de equilibrio. La suma de las fuerzas a lo largo del eje X:
SFx = B – A cos 60° = 0
B = A cos 60° = 0.5 A (1)

Ahora al sumar las componentes en Y:
S Fy = A sen 60° - 100N = 0

Por lo que:
A sen 60° = 100N

Ahora se despejan las fuerzas desconocidas:
(sen 60° = .8660)
.8660 A = 100N
A = 100N / .8660 = 115N

Conocemos el valor de A, ahora despejamos B de la ecuación 1:
B = 0.5 A = (0.5)(115N) = 57.5N


ACTIVIDAD No 1
Resuelva los siguientes ejercicios en hojas blancas en forma clara y ordenada.

- Una pelota de 250N cuelga atada a otras dos cuerdas, como se observa en la figura. Encuentre las tensiones en las cuerdas A, B Y C.
TAREA No 1
- Una pelota de 250N suspendida por una cuerda A es tirada hacia un lado en forma horizontal mediante otra cuerda B y sostenida de tal manera que la cuerda A forma un ángulo de 40° con el poste vertical ¿ encuentre las tensiones en las cuerdas A y B.

- Una pelota de 300N suspendida por una cuerda A es tirada hacia un lado en forma horizontal mediante otra cuerda B y sostenida de tal manera que la cuerda A forma un ángulo de 45° con el poste vertical ¿ encuentre las tensiones en las cuerdas A y B.


Equilibrio traslacional

Seguramente estas familiarizado con la idea básica del concepto fuerza. De tu experiencia cotidiana sabes que aplicas una fuerza cuando jalas o empujas algún objeto. Cuando pateas un balón sabes que aplicas una fuerza. Tal vez creas que la fuerza se asocia con el movimiento, sin embargo, no siempre que se aplica una fuerza se produce movimiento. Si empujas una de las paredes de tu salón de clases verás que no se produce movimiento alguno a pesar del esfuerzo que haces.

Decimos que un objeto se encuentra en equilibrio si no esta acelerado. Por tanto el equilibrio considera dos situaciones: cuando el objeto esta reposo o bien cuando se mueve de una velocidad constante en una trayectoria rectilínea

Decimos que un objeto esta en equilibrio traslacional cuando se encuentra en reposo o bien se mueve en línea recta con velocidad constante.
Condiciones de equilibrio: Para que un cuerpo se encuentre en equilibrio, se requiere que la sumatoria de todas las fuerzas o torcas que actúan sobre él sea igual a cero. Se dice que todo cuerpo tiene dos tipos de equilibrio, el de traslación y el de rotación.

Traslación: Es aquel que surge en el momento en que todas las fuerzas que actúan sobre el cuerpo se nulifican, o sea, la sumatoria de las mismas sea igual a cero.

EFx = 0EFy = 0

Rotación: Es aquel que surge en el momento en que todas las torcas que actúan sobre el cuerpo sean nulas, o sea, la sumatoria de las mismas sea igual a cero.



EMx= 0EMy= 0
Aplicaciones: Se utiliza en todo tipo de instrumentos en los cuales se requiera aplicar una o varias fuerzas o torques para llevar a cabo el equilibrio de un cuerpo. Entre los instrumentos más comunes están la palanca,la balanza romana, la polea, el engrane, etc.








Problema del equilibrio traslacional





Primero se visualiza el problema de la siguiente manera:

A continuación se elabora su diagrama de cuerpo libre.



Porque los cuadrantes en los que se localizan son negativos.
EFy=F1y+F2y+F3y=0
EFx=-F1 cos 45+F2=0
Una caja de 8 N está suspendida por un alambre de 2 m que forma un ángulo de 45° con la vertical. ¿Cuál es el valor de las fuerzas horizontal y en el alambre para que el cuerpo se mantenga estático?.
Ahora por medio de la descomposición de los vectores, calculamos la fuerza de cada uno de ellos.
F1x = - F1 cos 45°*
F1y = F1 sen 45°
F2x = F2 cos 0° = F2
F2y = F2sen0°=0
F3x = F3cos90°=0
F3y = - F3 sen 90° = - 8 N*

Como únicamente conocemos los valores de F3, F2 y la sumatoria debe ser igual a cero en x e y, tenemos lo siguiente:
EFx=F1x+F2x+F3x=0
Por lo tanto tenemos lo siguiente:

F2=F1(0.7071)
EFy=-F1sen45-8N=0
8N=F1(0.7071)
F1=8N/0.7071=11.31 N
Para calcular F2, se sustituye F1 de la ecuación siguiente:
F2=F1(0.7071)
F2=11.31(0.7071)=8N














Leyes de Newton

Primera ley o ley de inercíaTodo cuerpo permanece en su estado de reposo o de movimiento rectilíneo uniforme a menos que otros cuerpos actúen sobre él.
Segunda ley o Principio Fundamental de la DinámicaLa fuerza que actua sobre un cuerpo es directamente proporcional a su aceleración.
Tercera ley o Principio de acción-reacciónCuando un cuerpo ejerce una fuerza sobre otro, éste ejerce sobre el primero una fuerza igual y de sentido opuesto.
Estas son las tres leyes de Newton y, a continuación, vamos a comentarlas cada una por separado.

La primera ley de Newton, conocida también como Ley de inercía, nos dice que si sobre un cuerpo no actua ningún otro, este permanecerá indefinidamente moviéndose en línea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).
Como sabemos, el movimiento es relativo, es decir, depende de cual sea el observador que describa el movimiento. Así, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento. La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actua ninguna fuerza neta se mueve con velocidad constante.
En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial.

La Primera ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista algo que provoque dicho cambio. Ese algo es lo que conocemos como fuerzas. Estas son el resultado de la acción de unos cuerpos sobre otros.
La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera:
F = m a
Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:
F = m a
La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N. Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2, o sea,
1 N = 1 Kg · 1 m/s2
La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m · a. Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.
Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir:
p = m · v
La cantidad de movimiento también se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg·m/s . En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:
La Fuerza que actua sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir,
F = dp/dt
De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos:
F = d(m·v)/dt = m·dv/dt + dm/dt ·v
Como la masa es constante
dm/dt = 0
y recordando la definición de aceleración, nos queda
F = m a
tal y como habiamos visto anteriormente.
Otra consecuencia de expresar la Segunda ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservación de la cantidad de movimiento. Si la fuerza total que actua sobre un cuerpo es cero, la Segunda ley de Newton nos dice que:
0 = dp/dt
es decir, que la derivada de la cantidad de movimiento con respecto al tiempo es cero. Esto significa que la cantidad de movimiento debe ser constante en el tiempo (la derivada de una constante es cero). Esto es el Principio de conservación de la cantidad de movimientosi la fuerza total que actua sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo.

Tal como comentamos en al principio de la Segunda ley de Newton las fuerzas son el resultado de la acción de unos cuerpos sobre otros.
La tercera ley, también conocida como Principio de acción y reacción nos dice que si un cuerpo A ejerce una acción sobre otro cuerpo B, éste realiza sobre A otra acción igual y de sentido contrario.
Esto es algo que podemos comprobar a diario en numerosas ocasiones. Por ejemplo, cuando queremos dar un salto hacia arriba, empujamos el suelo para impulsarnos. La reacción del suelo es la que nos hace saltar hacia arriba.
Cuando estamos en una piscina y empujamos a alguien, nosotros tambien nos movemos en sentido contrario. Esto se debe a la reacción que la otra persona hace sobre nosotros, aunque no haga el intento de empujarnos a nosotros.
Hay que destacar que, aunque los pares de acción y reacción tenga el mismo valor y sentidos contrarios, no se anulan entre si, puesto que actuan sobre cuerpos distintos.














Movimiento Circular Uniformemente acelerado

MOVIMIENTO CIRCULAR UNIFORMEMENTE ACELERADO – MCUA


Dibujo del movimiento circular uniformemente acelerado
El movimiento circular uniformemente acelerado (MCUA) se presenta cuando una partícula o cuerpo sólido describe una trayectoria circular aumentando o disminuyendo la velocidad de forma constante en cada unidad de tiempo. Es decir, la partícula se mueve con aceleración constante.
En el dibujo se observa un ejemplo en donde la velocidad aumenta linealmente en el tiempo. Suponiendo que el tiempo en llegar del punto P1 a P2 sea una unidad de tiempo, la partícula viaja con una aceleración tangencial uniforme v, incrementándose esa cantidad en cada unidad de tiempo.

Posición

Dibujo de la posición de una partícula en un movimiento circular uniformemente acelerado (MCUA)
El desplazamiento de la partícula es más rápido o más lento según avanza el tiempo. El ángulo recorrido (θ) en un intervalo de tiempo t se calcula por la siguiente fórmula:

Fórmula del ángulo recorrido por una partícula dependiendo del tiempo en un movimiento circular uniformemente acelerado (MCUA)
Aplicando la fórmula del incremento de ángulo calculamos laposición en la que estará la partícula pasado un tiempo t se obtiene la fórmula de la posición:

Fórmula de la posición de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Velocidad angular

La velocidad angular aumenta o disminuye linealmente cuando pasa una unidad del tiempo. Por lo tanto, podemos calcular la velocidad angular en el instante t como:

Fórmula de la velocidad angular de una partícula en un movimiento circular uniformemente acelerado (MCUA)
El sentido de la aceleración angular α puede ser contrario al de la velocidad angular ω. Si la aceleración angular es negativa, seria un caso de movimiento circular uniformemente retardado.

Velocidad tangencial

La velocidad tangencial es el producto de la velocidad angular por el radio r. La velocidad tangencial también se incrementa linealmente mediante la siguiente fórmula:

Fórmula de la velocidad tangencial de una partícula en un movimiento circular uniformemente acelerado (MCUA)
Dándose aquí igualmente la posibilidad de aceleración negativa que se ha descrito en el apartado anterior.

Aceleración angular

La aceleración angular en el movimiento circular uniformemente acelerado es constante. Se calcula como el incremento de velocidad angular ω desde el instante inicial hasta el final partido por el tiempo.

Fórmula de la aceleracion angular de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Aceleración tangencial

La aceleración tangencial en el movimiento circular uniformemente acelerado MCUA se calcula como el incremento de velocidad v desde el instante inicial hasta el final partido por el tiempo.

Fórmula de la aceleracion tangencial de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Aceleración centrípeta

La aceleración centrípeta en el MCUA se halla mediante:

Fórmula de la aceleración centrípeta en el movimiento circular uniformemente acelerado(MCUA)

Componentes intrínsecas de la aceleración

Dibujo de las componentes intrínsecas de la aceleración en el movimiento circular.
La velocidad tangencial por la trayectoria en un punto P es v. En un intervalo de tiempo pequeño Δt, la velocidad incrementa a v’ en el punto P’, después de haber descrito un ángulo Δφ.
En la figura se puede ver el incremento de la velocidad tangencial Δv descompuesta en dos componentes: la tangencial Δvt y la normal (o centrípeta) Δvn.
Si dividimos ambas componentes de la velocidad por Δt, tendremos las componentes intrínsecas de la aceleración: la aceleración tangencial at y la aceleración normal an (ocentrípeta).

Período

En el MCUA la velocidad angular cambia respecto al tiempo. Por tanto, el período cada vez será menor o mayor según si decrece o crece la velocidad angular.

Fórmula del período en el movimiento circular uniformemente acelerado (MCUA)

Frecuencia

La frecuencia en el caso del MCUA es mayor o menor porque la velocidad angular cambia. La fórmula de lafrecuencia será:

Fórmula de la frecuencia en el movimiento circular uniformemente acelerado (MCUA)